
Review: Memory Sleuth 1.0
Reviewed by Bob Swart

You’ve written your great new
Delphi 2 application and now

it’s time to deliver. And on the eve
of delivery, you find out the pro-
gram is leaking memory and,
worse, resources. What to do?
Delivery is due tomorrow morning!
Should we order an extra large
pizza (with lots of pepperoni)?
Why not call in the professional
help of... Memory Sleuth – after all,
its only job is to detect memory
and resource leaks in applications.
And we’ll soon see it’s the best at
what it does!

Shadowing
Like a true detective, Memory
Sleuth works by shadowing the
offender. In this case any 32-bit ap-
plication written in Delphi 2.0x that
is compiled with full debug infor-
mation included in the executable
(both the {$D+,L+} flags and the
debug info in exe option are
needed). Now start up Memory
Sleuth and open the offending
application, like the 32-bit version
of DELBOOKS.EXE (Figure 1).

Memory Sleuth will show the ad-
dress of the units which make up
the application. Note that a few
units are specified not to trace out
of. This means that we won’t see
any error reports for leakages in
these specific units (such as the
system unit), but rather for the
units that call them. We don’t want
the little kid who done it, we want
to catch the boss who called for it!
Setting trace out of to True for a lot
of VCL units will help identify the
spot in our own components and
application.

The user interface of Memory
Sleuth is simplicity itself: the man-
ual needs only a few pages to ex-
plain the options and features
since most of the job is done
“undercover” while the application
being tested is running.

The Scene of the Crime
A simple click on the Run button is
needed to start the application we

want to test. After working a while
with the test application we can
switch over to the Running Status
tab in Memory Sleuth to view the
offender in action at the scene of
the crime! See Figure 2.

This page shows us memory us-
age plus USER and GDI resources,
including peaks (so you can even
use Memory Sleuth to determine
the maximum memory and re-
sources needed if you just walk
through every screen, dialog and
option of your program).

Messages
Memory Sleuth is also able to
eavesdrop on debug messages that
are being sent by the application
using either the OutputDebugString
API or the Memory Sleuth Debug-
ging Driver itself. We can use this
for extended debugging purposes
as well (or in case you don’t have a
copy of the 32-bits version of Turbo
Debugger, for example).

Memory Sleuth also catches
accidental heap memory over-
writes. By turning on overwrite

protection, Memory Sleuth will
watch to make sure you never write
beyond the bounds of an allocated
memory block. This is done by ap-
pending a few bytes with a known
value and re-checking them later.
Any overwrite will be detected.

Evidence
Unlike peak memory and resource
and heap overwrites, real memory
and resources leakages will of
course only be detectable after the
program has terminated. Closing
the DELBOOKS application and
returning to Memory Sleuth, the
devastating results are shown in
the screenshot on the cover.

It looks like we’ve got a lot of
problems: all kinds of memory and
resource leaks! I’m really pretty
sure I didn’t leave any leaks myself
(whatever is allocated sure is freed
as well). That’s where the extra
facts come in: Memory Sleuth
comes with a text file and hard evi-
dence that exposes several leaks in
8 units of Delphi 2’s VCL. So, what
we’re seeing here is in fact not

➤ Figure 1

52 The Delphi Magazine Issue 15

DELBOOKS leaking memory, but
the VCL.

So, the first thing any Memory
Sleuth user needs to do is fix the
VCL according to the supplied file
VCL.TXT. If you don’t do this you
won’t be able to distinguish be-
tween leaks in your application and
those in the VCL.

One of the units (SysUtils) can’t
be re-compiled without Turbo

Assembler. Two of the fixes were
also done (one in a different way)
by Borland for Delphi 2.01. After I
fixed the VCL and re-ran Memory
Sleuth, all the leaks disappeared!
[Take a Gold Star for tidy program-
ming, Dr.Bob! Editor].

Case Closed
Having seen Memory Sleuth in ac-
tion, I can’t imagine ever releasing

a Delphi 2 application again with-
out having checked it with Memory
Sleuth. It takes just a few minutes
and the results are sure worth it!

Detective Fee
Like a good detective, Memory
Sleuth is excellent value, consider-
ing the heartache (and customer
complaints) it can save you. For
US$49 you can buy it direct from
TurboPower Software, or from
your favourite software tools re-
tailer. The VCL.TXT file alone is
worth half the price!

Please note again that Memory
Sleuth only supports 32-bit applica-
tions developed with Borland
Delphi 2. DLLs need to be turned
into executables to be traceable,
but that is usually not a big prob-
lem. For Delphi 1 applications
check out MEMMOND, Memory
Sleuth’s 16-bit little brother (also
written by Per Larsen).

TurboPower can be contacted by
telephone on +1 719 260 9136, or
fax +1 719 260 7151, or GO TUR-
BOPOWER on CompuServe, or
visit http://www.tpower.com

➤ Figure 2

	Shadowing
	The Scene of the Crime
	Messages
	Evidence
	Case Closed
	Detective Fee

